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Burgers’ equation, a one-dimensional analogue of the Navier-Stokes equation, has 
been solved numerically in full detail a t  high (equivalent) Reynolds numbers. These 
fine-mesh solutions have been used to study the dynamics of the Burgers’ equation 
analogue of three-dimensional turbulence and in particular the drain of energy from 
the large to the small structures. 

The equation has also been solved on a coarse mesh, using various forms of subgrid 
model. The solutions so derived have been compared with filtered solutions of the 
same problem on a fine mesh. In this way it has been possible to test directly the 
performance of subgrid models a t  high Reynolds numbers, a test which cannot be 
made on the Navier-Stokes equations themselves. 

With proper choice of the parameters, the performance of the subgrid models is 
very satisfactory. 

1. Introduction 
The great range of eddy sizes in a high-Reynolds-number flow means that for such 

flows it still is and may always be impossible to compute the detailed motions of all the 
length scales present (Corrsin 1961). Large-eddy simulations provide a way round this 
impasse: they give the detailed time-dependent motions of the large eddies only. They 
smooth over the details of the small dissipation eddies, and thus for a high-Reynolds- 
number flow, reduce the range of eddy sizes to a manageable level. 

This reduction in the range of eddy sizes is achieved by working with the space- 
averaged (filtered) Navier-Stokes equations. Large-eddy simulations are simply 
numerical solutions to these equations. Unfortunately in deriving the space-averaged 
Navier-Stokes equations terms that involve the small eddies still appear. These 
terms represent the drain of energy from the large eddies to the small eddies, and 
cannot be ignored. This means that if the detailed motions of the small eddies are not 
to be included in the calculation, ways must be found to represent this drain that do not 
depend on a detailed description of the small eddies. The solution is to replace the 
terms by a sub-grid model that involves only the detailed motions of the large eddies. 

Subgrid models then are necessary in large-eddy simulations in order to  close the 
calculations. Although there are strong reasons for believing subgrid models to be 
more universal than one-point closure models (Ferziger 1976), it  appears that the 
choice of subgrid model can nevertheless greatly influence the success of a large-eddy 
simulation. A wide variety of subgrid models, filters, boundary conditions, and finite- 
difference schemes have been tried. Despite this neither the optimum choice of subgrid 
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model nor the reasons for making the choice are clear. This is because for high- 
Reynolds-number turbulent flows exact non-trivial solutions to the Navier-Stokes 
equations do not exist. Also for such flows the complex interaction between the 
physics and numerics means that in a large-eddy simulation it is very dificult to 
unscramble the effects of the various processes present. Consequently in this article we 
attempt to examine the nature and effectiveness of subgrid modelling procedures by 
seeking numerical solutions to the Burgers’ equation 

a a a2 

at ax 8x2 
-u(x, t )  + u- u- Y- u = f(x, t ) ,  

subject to the boundary conditions 

u(x, t )  = u(x+ L, t )  for 0 < x Q L. 

Heref(x, t )  is a driving force. 
Burgers’ equation is a one-dimensional anaIogue of the Navier-Stokes equations. Its 

one-dimensional character allows us to sidestep the difficulties encountered in study- 
ing the effectiveness of subgrid modelling procedures by numerical calculations on the 
high-Reynolds-number Navier-Stokes equations. For Burgers’ equation all scales of 
motion can be modelled in the computation, even if the Reynolds number is very high. 
These ‘exact ’ solutions can be compared with coarse-mesh or large-eddy simulation 
solutions, and this affords a precise method for testing the performance of the large- 
eddy simulation technique a t  high Reynolds numbers. 

The investigation is in two parts. First we solve equation ( I )  on a fine mesh with 
periodic boundary conditions and with all length scales fully resolved: the results of 
these calculations are designated exact. They allow us to explore the exact dynamics of 
Burgers’ equation and to demonstrate that there are many qualitative similarities 
between its solutions and those of Navier-Stokes turbulence. In particular they con- 
firm previous findings (Kraichnan 1968; Hosokawa & Yamamoto 1975) that for 
Burgers’ model turbulence the large and small eddies are statistically independent 
and separated in wavenumber space by a characteristic inertial range. We then 
filter the exact solutions and explore both the dynamics of the large-scale flow struc- 
tures and the properties of the subgrid energy-drain terms. The results of these calcu- 
lations confirm Burgers’ model turbulence as a useful vehicle for exploringthe effective- 
ness of subgrid modelling techniques. They also justify the second stage of the investi- 
gation in which we attempt to reproduce, using the large-eddy simulation technique, 
the dynamics of the large-scale flow structures as observed in the exact calculations. 
This in turn permits us to expIore both the optimum choice of subgrid model and the 
propagation of error. 

The calculations reported below are for three flow situations: these are the free 
decay of an ensemble of shock fronts, a travelling wave solution, and a stochastically 
forced ensemble of shock fronts, Of these; the second represents a simple flow situa- 
tion, whose study allows us to isolate and investigate in detail the cause of spectral 
distortions. The other two represent more complex-flow situations which, since they 
are more akin to real flows, provide a more rigorous test of subgrid modelling tech- 
nique. Details of the numerical techniques used for this investigation are available on 
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request; some of the preliminary findings of this investigation have been presented 
elsewhere (Love & Leslie 1977). 

2. Mathematical formation 
2.1. The filtered equation of motion 

In  applying the large-eddy simulation technique to Burgers’ model turbulence it is 
first necessary to derive an equation of motion for the large-scale (grid-scale) velocity 
components. The nonlinear nature of Burgers’ equation means that there is a con- 
tinuous range of eddy sizes and that consequently there is no natural division of the 
flow into large and small eddies. The same is true for Navier-Stokes turbulence. We 
therefore effect the division following Leonard ( 1974) by defining grid-scale variables 
according to 

r 

@(x, t )  = J G(z, x’) g ( d ,  t )  dx’ 
space 

and subgrid variables by 
g’(x, t )  = g(x, t )  - @(x,  t ) .  (3) 

Here G denotes a filter function with characteristic length A. Following the recom- 
mendations of Kwak, Reynolds & Ferziger (1975) we adopt for this work the Gaus- 
sian filter 

where 
G(z)  = (6/nA2)*exp ( - 6z2/A2), (4) 

z = 2--2’. 

In  using this filter, we recognize that there is no sharp separation between large and 
small eddies. Instead it gradually attenuates the small-scale structures. 

Filtering equation ( 1 )  according to (2) we obtain 

where 

denotes the residual stress. The first term in (6) is called the resolvable scale or Leonard 
stress since it does not involve the subgrid component ut explicitly. 

The dependent variables in (5) vary smoothly over lengths of O(A). This means that 
in seeking to solve ( 5 )  by numerical methods a relatively coarse mesh with interval h, 
where h is of O(A), can be used. Without filtering h would need to be smaller than the 
smallest dissipation eddy, thus demanding the use of a very fine mesh: in the case of a 
three-dimensional flow it would not be possible to accommodate such a mesh on 
existing computers. The price paid for making the calculation fit onto a coarse mesh in 
this matter is that the u’ are unknown. To close the filtered equations of motion those 
terms which involve ut must be approximated by expressions that only involve E .  
From the physical viewpoint this amounts to replacing the terms that involve ut by a 
subgrid model which represents the interaction between the large and small eddies 
with terms that depend only on the detailed motions of the large eddies. 
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2.2. Speci$cation of subgrid models 
The models are first presented as mathematical constructs; their performance is then 
subsequently investigated and analysed. We consider four subgrid models. They are 
all one-dimensional analogues of subgrid models used elsewhere in the simulation of 
homogeneous Navier-Stokes turbulence. The first assumes that the residual stress 
term in (5) behaves as though it were due to molecular viscosity: using this analogy we 
simply define a turbulent viscosity vT1 by 

and then assume a functional form for vT1. We return later to the complete specifica- 
tion of vT1 (see equation (14)). 

Model 2 is a variant of this basic model. It relies on the approximation 

which, for the Gaussian filter specified by (4), simplifies to 

Using this expansion procedure we approximate the first term on the right-hand side 
of (6) bv 

and then assume the remainder of the residual stress term in ( 5 )  behaves as though it 
were due to a molecular viscosity. We accordingly define the turbulent viscosity vT2 by 

This completes model 2: again we leave the detailed specification of vT2 until later 
(see equation (14)). 

Models 3 and 4 define the turbulent viscosities vT3 and vT4 by 

and 

These models are analogous to subgrid models used elsewhere (see Ferziger 1976) in the 
simulation of Navier-Stokes turbulence. There is no simple physical concept such as 
eddy viscosity embodied in the construction of either of these models. Model 3 can be 
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derived from model 2 if the expansion procedure of equation (9) is applied to  the first 
two terms appearing on the right-hand side of equation (6). Such an expansion is 
however mathematically indefensible since the u' are not smoothly varying over 
lengths of O(A). Model 4 follows from a detailed examination of the round-off errors 
appearing in a second-order energy-conserving finite-difference approximation t o  the 
term &?/ax (see equation (34)). In  short both models 3 and 4 are nothing other than 
guesses giving an alternative to the standard eddy viscosity models. Model 3 has the 
advantage over model 2 of involving a lower order differential, which simplifies the 
treatment of boundary regions. Model 4 is particularly easy to implement from a 
numerical view point. 

The substitution of any of equations (7) ,  (1 1 )  or ( 13) into (5) gives a closed equation 
of motion for the grid scale velocity field once the form of the vTi is specified. We effect 
the closure by assuming 

W- 

where ci is a constant and laii/ax/ denotes the average over a length w of the quantity 
I aG/axI. I n  the limit as w -+ 0 equation (14) tends to the one-dimensional equivalent of 
the Smagorinsky-Lilly subgrid model (Smagorinsky 1963; Lilly 1966, 1967). I n  the 
limit as w -+ L it tends t o  the direct-interaction subgrid model investigated by Leslie 
& Quarini (1979; see also Love & Leslie 1977). 

2.3. Energy balance in the filtered equation of motion 

The equation of motion for the energy per unit volume in the exact and grid-scale 
fields is obtained by multiplying ( 1 )  and ( 5 )  throughout by u and T i  respectively, and 
then averaging the ensuing raw-energy equation over an ensemble of realizations of 
the flow field. The result for a homogeneous flow is 

and 

where () denotes the operation of averaging over an ensemble of realizations. I n  
equation (16) the grid-scale dissipation is seen t o  comprise three components, the 
resolvable scale component E r S ,  the subgrid scale component E s g s ,  and the molecular 
viscosity component Emv. These are defined as 

and 
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I n  equation (15) ern" is the whole of the molecular-viscous dissipation. It will be seen 
from these equations that the crucial difference between the energy balance in the 
exact field and the grid-scale field is that  in the former the nonlinear terms are energy 
conserving and therefore vanish whereas in the latter they are responsible for the 
drain of energy from the flow field. If we consider the contribution of the subgrid drain 
term to the energy balance, model 1 may be written as 

model 2 as 

model 3 as 

Here 

denotes the rate a t  which energy is dissipated through the eddy viscosity closure 
assumption. I n  model 4 the relationship between the different terms appearing in the 
subgrid model and the components of the grid-scale dissipation is not clear. 

Finally we note that 
E(k,  t )  = (E(k, t )  E( - k, t ) )  (24) 

(G(k ,  t )  being the Fourier transform of E(x, t ) )  satisfies the equation 

($+2vk2)  E ( k , t )  = T ( k , t ) + P ( k , t ) ;  

P and T represent the effects of production and of net outward inertial transfer. 
Equation ( 2 5 )  is of course identical with the energy-balance relation for the 
Navier-Stokes equations. The term T ( k ,  t )  in equation (25) is derived from the term 

R]/ax in equation (5),  while P(k, t )  is derived from the termf(x,t). The con- 
ribution of the residual stress R to  T(k,  t )  means that T(k,  t )  is not energy conserving. 

3. Fine-mesh calculations 
3.1. DeJinition of length scales and the numerical m.odel 

Fine-mesh calculations were performed for two flow configurations : a freely decaying 
ensemble of shock fronts, and a stochastically forced ensemble of shock fronts. We 
put equation ( 1 )  in dimensionless form by scaling all lengths with Lo and all times with 
To = L,/U,, and then compute the time evolution of u(x,t). Here Lo = 2/K,,,, 
where K&:x is the wavelength a t  which E ( k ,  t = 0 )  reaches its maximum and E,  = $5; 
denotes the mean energy per unit length of the flow. The Reynolds number defined by 
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x +  - 
FIGURE 1. Typical velocity profile. 

was set for the freely decaying ensembles at 16, 65, 180, 325, and for the stochastically 
forced ensemble a t  500. 

A second-order finite difference analogue of equation ( 1 )  was used to obtain the 
solutions reported below. Samples were taken from repeated realizations, and spectral 
variables were averaged over adjacent wavenumbers. It was found that a sample of 32 
realizations allowed smooth and repeatable profiles to be obtained for the flow features 
of interest to this study. The salient features of the numerical model are the use of the 
implicit Crank-Nicholson time stepping procedure, an energy conserving space- 
differencing scheme for the nonlinear terms, and central space-differencing schemes 
for all the remaining terms. Both the stochastic forcing function and initial flow field 
were constructed by the Wiener process (Jeng 1969) to have Gaussian statistics with 
the power spectrum 

Ale4 exp ( - 4k2a2). (27) 

Here A and a are constante: was selected such that the ratio LIL, N 12; this con- 
fined the velocity spectrum to approximately the first 50 wavenumbers. The values of 
A and v were chosen to give the values of Re specified above, whilst still confining the 
dissipation specture to approximately the first 250 wavenumbers. The mesh interval h 
was set at L/4096, which was approximately i t h  of the smallest wavelength of signifi- 
cance. This choice means that aliasing errors and first and second derivative errors do 
not cause any appreciable distortion of the high wavenumber tail of the velocity 
spectrum. 

3.2. Exact dynamics 

Burgers’ equation governs a one-dimensional flow in which fluid volume is not con- 
served. Figure 1 displays a typical velocity profile. Two characteristic lengths can be 
identified : a macroscopic length scale L, associated with the energy containing modes, 
and a microscopic length scale 6, the shock front width, which is associated with the 
dissipation process; L, will be of the same order as Lo defined above while 6 will vary 
inversely as Re (Jeng & Meecham 1972). Also both length scales will vary as the flow 
evolves in time. It is tempting to define an ‘intrinsic ’ Reynolds number in terms of the 
ratio of these two lengthscales, and then to compare it with the corresponding ratio 
for Navier-Stokes turbulence, Unfortunately it turns out that this cannot be done in a 
self-consistent manner, and we therefore define the Reynolds number for Burgers’ 
turbulence by equation (26). This is because Kolmogorov’s hypothesis is not valid in 
one dimension; the small-scale structure of Burgers’ turbulence is not a function of the 
dissipation rate e and viscosity v only. 
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FIGURE 2. Variation of total energy with t and Re (free decay ensemble). 
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Re = 600. 
FIGURE 3. Time variation of total energy and dissipation (stochastically forced ensemble), 

Plotted on figures 2 and 3 are the computed variation with time of both mean energy 
and mean dissipation per unit length for freely decaying and stochastically forced 
ensembles of flow fields at varying Re. For Re 2 65 these profiles display three distinct 
phaws of evolution. For small t little dissipation of energy occurs. Next, for inter- 
mediate t the rate of dissipation increases sharply, and then finally for large t the flow 
either settles to an equilibrium level (for the stochastically forced ensemble) or drops 
off to zero (for the freely decaying ensemble). The interpretation of these observations 
is that in the first phase the more rapidly moving fluid particles overtake the slower 
moving ones, and shock fronts with the characteristic saw-tooth profile thus form. 
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FIGURE 5 .  Transfer spectrum. 

Little dissipation takes place during this phase, which is termed the pre-shock phase, 
since a t  high Reynolds numbers dissipation occurs predominantly in the shock fronts 
and these have yet to form. With the onset of shocks the flow evolves into the second 
or post-shock phase and regions of strong vorticity appear, which sweep in an inter- 
mittent manner across the flow field. Fluid volume is not conserved and the shocks, 
which move with the average velocity of the adjaecent fluid elements, coalesce on 
collision. The dissipation rate depends on the rate a t  which fluid particles are convected 
into the shocks, and thus the normalised dissipation rates shown on figure 2 are inde- 
pendent of Re. Although the width of the shock fronts or dissipation eddies is in- 
versely proportional to Re, the characteristic profile of these eddies is independent of 
the large scale motions: these determine the number and evolution of the shocks. Thus 
for Burgers’ model turbulence the large energy-containing eddies and small dissipation 
eddies are statistically independent. 
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FIGURE 6. Evolved velocity spectra K = 2nn/L, n = 0, 1, 2, .... 

In  the case of the freely decaying ensemble with Re = 16 the Reynolds number is 
sufficiently low that the viscous forces are important a t  all stages of the flow evolution. 
These forces oppose the formation of regions of steepened velocity gradient, and thus 
the mean energy of the flow drops off rapidly with time. 

Equation ( 1 )  embodies an energy conserving cascade process (see also equation (25)) 
in which energy is transferred from low wavenumbers to high wavenumbers, where it 
is dissipated by viscous forces. Figures 4, 5 and 6 illustrate three different aspects of 
this process. Plotted on figure 4 are velocity spectra a t  different moments in time. The 
initial spectrum is confined to low wavenumbers. As the flow evolves higher and 
higher wavenumbers are excited, until the steady state spectral form is attained. 
Figure 5 shows the equilibrium transfer spectrum T(k)  for the stochastically forced 
ensemble: T(k)  (see equation (25)) represents the transfer of energy from wavenumber 
k to  all other wavenumbers. It is seen that a t  low wavenumbers T(k)  is negative, 
representing a net outflow of energy to other wavenumbers, while at high wave- 
numbers it is positive representing a net gain. The integral of T(k)  over all wave- 
numbers is of course zero. 

The post-shock evolved velocity spectra plotted on figure 6 are for freely decaying 
ensembles of flow fields a t  varying Re. These profiles kogether with figure 4 show that 
a t  intermediate wavenumbers the velocity spectrum is well fitted by a k-= power law. 
This is analogous to the inertial range of Navier-Stokes turbulence, and shows Burgers’ 
equation to conform to an important ingredient of Kolmogorov’s inertial range theory. 

The above findings demonstrate that there are many qualitative similarities be- 
tween the dynamicsof Burgers’ turbulence and Navier-Stokes turbulence. We suggest 
that  it is the existence of an inertial range a t  high Reynolds numbers and the statistical 
independence of the large and small scale flow features which make Burgers model 
turbulence a useful vehicle for exploring the sub-grid modelling techniques which are 
used in large-eddy simulations of the Navier-Stokes equations. Nevertheless caution 
must be exercised in interpreting our findings since there are important differences 
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FIGURE 7 .  Exact and filtered spectra. 

between the dynamics of the two flows. For example detailed study of figure 5 shows 
that for Burgers model turbulence a downward cascade of energy occurs a t  very low 
wavenumbers. The polarisation of energy towards lower and higher wavenumbers 
results from the tendency of the flow fields to organize themselves into regions of 
smooth variation of velocity gradient, together with isolated regions of steep velocity 
gradient (the shock fronts). This results in a precise ordering of phase of the low wave- 
number components, an effect not found in Navier-Stokes turbulence. Burgers' 
equation thus reduces initial chaos instead of increasing it, an effect which is directly 
attributable to the absence of a pressure term. In  turbulence pressure-induced accel- 
erations cause fluid particles to forget the history of their motions and two flow fields 
which are initially almost identical will quickly diverge. I n  Burgers' turbulence loss of 
memory occurs only through the action of the viscous forces and random accelerations 
produced by the driving force, and in marked contrast to Navier-Stokes turbulence 
different realizations of the initial velocity fields driven by the same realization of the 
driving force converge. Another marked difference between Navier-Stokes turbulence 
and Burgers turbulence is seen from figures 6 and 7. The inertial range of Burgers 
turbulence displays a k-2 profile in contrast to the k-Q inertial range profile of turbu- 
lence. This means that the post-shock dissipation spectra for Burgers' equation are 
flat throughout the inertial range. In Navier-Stokes turbulence the dissipation spec- 
trum varies as k+*, 

3.3. Filtered dynamics 

The velocity fields computed for the stochastically forced ensemble were spatially 
filtered using the Gaussian filter specified in equation (4)  with A = L/64.  This filter 
(see figure 7 )  corresponds to the filter used for the large-eddy simulations reported in 
the next section. It retains about 80 yo of the total energy and about 5 yo of the dissi- 
pation, i.e. it weakly attenuates the velocity spectrum and strongly attenuates the 
molecular viscosity dissipation spectrum. Fig. 8 shows the time variation of mean 
energy per unit length for the filtered fields. It is seen that this profile does not display 
the sharp kink a t  t N 60At shown by the exact fields (see figure 3) .  It will be recalled 

A F L M  I00 
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FIGURE 8. Time variation of' total energy in filtered field. 
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FIGURE 9. Subgrid dissipation components. 

that this kink corresponds to the onset of shocks. I ts  absence in figure 8 is explained as 
follows. During the first stages of the evolution of the exact velocity fields little dissi- 
pation takes place as energy cascades from low wavenumbers to high wavenumbers. 
This energy is not lost and there is thus no net dissipation of energy from the exact 
fields. Ultimately sufficiently high wavenumbers are excited that the viscous forces 
begin to bite, and the dissipation rate then builds up. In contrast, during the first stages 
of the evolution of the filtered velocity fields this same cascade appears as a net 
dissipation, since the energy cascading out of the low wavenumbers represents a net 
loss of energy from the filtered fields and a net gain of energy by the subgrid velocity 
fields. 

The spectral distribution of the components of the residual stress dissipation rate 
a t  t = 1032ht is plotted on figure 9. It is interesting to note that Frs peaks a t  higher 
wavenumbers than Esgs, while b,, has a high wavenumber tail. This suggests that ETs 
and i?,, play an important role in controlling high-wavenumber excitations in large- 
eddy simulations. It is seen that E s g s  peaks near to the peak of Emv which suggests that 
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FIGURE 11. Time variation of approximations to  E,, and 

for the evolved velocity field Csgs has a structure similar to  that of Emv. The shape of the 
high-wavenumber tail of Emv is influenced by the choice of filter. For example with 
A = L/32 the tail is attenuated and 8," approaches the shape of E s g s  quite closely. 
This suggests that  the subgrid drain term in equation (5) can be usefully approximated 
by the eddy-viscosity model of equations ( 7 ) ,  (11) (12) and (13). It further suggests 
that  the approximation of treating the vTi as independent of space (though dependent 
on time) is reasonable. These results support earlier unpublished findings of Leonard 
& Patterson for low Reynolds numbers freely decaying Navier-Stokes turbulence. 
Also the qualitative similarities between the profiles shown on figure 9 and corres- 
ponding profiles obtained by Leonard & Patterson suggest that  the energy transfer 
between the grid and subgrid scales divides itself in a similar manner in the two flows. 

Figure 10 shows the time variation of the components of the residual stress dissipa- 
tion rate. It is seen that Crs and Zmv account for approximately 20 % in total (10 % 
each) of the net dissipation in the filtered fields. Bearing in mind the predominance of 

4-2 
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these terms a t  high wavenumbers this supports the view that they play an important 
role in controlling high wavenumber excitations in large eddy simulations. 

The series approximations to E, ,  and Zrs:sgs introduced in subgrid models 2 and 3 
(see equations (21) and ( 2 2 )  make identical contributions to the mean energy balance 
per unit length in the filtered velocity fields. It can be seen from figure 11, where the 
computed time variations of these quantities are plotted, that although the contribu- 
tion from the series approximations (dotted lines) predicts the magnitude and broad 
trend of both Frs and Ers:sgs correctly, it is in error by about 50 yo. The approximation 
lies between 8,, and ers,sgs; it overestimates Ers and underestimates Frs:sgs.  Interestingly 
enough the two series approximations combined together (broken line) give quite a 
reasonable approximation to the sum of Ers and E r s : s g s .  This suggests that  subgrid 
model 3 may prove superior, though it should be remembered that the results pre- 
sented in figure 11 provide only a very coarse measure of the performance of the differ- 
ent subgrid models. 

4. Coarse-mesh calculations 
4.1. The numerical model 

Coarse-mesh calculations are reported and compared with exact solutions for two 
flow situations. In. the first we attempt to reproduce on a coarse mesh the results of the 
fine-mesh calculations reported in 9 3 for the stochastically forced ensemble of flow 
fields. I n  the second we solve (1) on a coarse mesh with v = 0 and 

f ( x ,  t )  = A sin 2 n ( ( x / L )  - @/To)), (28 )  

where A denotes a constant. An exact solution to (1) exists for this case (Jeng 1969) 
which, if we scale all distances with L and all timee with To, takes the form 

u(x,  t )  = 1 + (2A/n)J sin ( ~ ( x  - t ) ) ,  0 6 x < xs, 
= 1 - ( 2 A / n ) J s i n ( n ( x - t ) ) ,  Xs < x < 1. (29 )  

This solution describes a discontinuous travelling wave which sweeps periodically 
across the flow field. The location of the discontinuity x, is determined by the condition 

j -o lU(x , t )dx  = 1 - ( 2 T ) ~ A J c o s ( T ( x , ~ - t ) )  = 0 

while the speed a t  which the shock fronts propagate is given by the average velocity 
of the adjacent fluid elements. This exact solution provides a more accurate standard 
of comparison for the coarse mesh calculations than do the fine mesh calculations of 

A fourth-order finite difference scheme was used for these calculations. This is 
because the series expansions used in 8 2.2 suggest that the residual stress terms are of 
O(A2), where A N h the mesh interval. This in turn implies that a difference scheme 
accurate to  a t  least O(h2) is necessary if the residual stress terms are to  remain more 
significant than differencing errors. 

Since there are many disadvantages to fourth-order difference schemes many 
workers in the field now question whether in practice schemes accurate to the second 
order might suffice. Fourth-order schemes are more complex to implement than 

9 3- 
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second-order schemes, which leads to a sizeable increase in run times, they spread over 
more mesh points than second order schemes thus making the treatment of boundaries 
more difficult, and they require a smaller time step than second-order schemes to avoid 
time differencing instability. There are in any case doubts about the convergence of the 
expansions introduced in $2.2 and thus doubts that  the residual stress terms are of 
O(A2) .  Taking the Fourier transform of equation (2) we find 

whence 

= - [% A2 k2 + O(A4k4)] g(k,  t )  
(33) 

for the Gaussian filter. Here G ( k ) ,  # k )  and g(k )  denote the transforms of G(x) ,  g(x), 
and g(x) respectively while k = 2nn/L. This expansion is valid for Ak < 1 but is not 
convergent for Ak > 1. The results set out in $3.3  show that the residual stress terms 
peak a t  wavenumbers where Ak > 1 ,  and indeed suggest that  the expansions are poor 
approximations. It has therefore been suggested (Shaanan, Ferziger & Reynolds 
1975) that second-order difference schemes might prove to be equally satisfactory 
provided that they are chosen so that their truncation errors match to a good approxi- 
mation the resolvable scale component of the residual stress term. 

[U(x + h )  + ii(x) + E(x - h)]  [E(x + h )  - G(x - h)]/6h 
For example 

a __  h2-a3;ii h2 a a2 - 

ax 6 8x3 3 ax ax2 = E -U +- u - +- - ii -U + O(h4) (34) 

The left-hand side of (34) is a energy-conserving finite-difference approximation to 
the term iiaU/ax accurate to the second order. Alternatively the right-hand side of 
(35) can be regarded as the basis for another different subgrid model. Pursuing this 
argument we approximate R as 

where vT4 is the turbulent viscosity introduced in ( 1  3). 

4.2.  Calculations of the subgrid constants 

The values of the subgrid constants used in the coarse mesh calculations reported 
below were obtained by a trial and error approach. Initially selected values for the ci 
were adjusted until the steady-state value of the mean energy per unit length in the 
coarse-mesh calculation (i.e. E ( t ) )  agreed with the corresponding quantity taken from 
the exact calculations. Figure 12 illustrates this process for the stochastically forced 
ensemble while the results of some of the calculations are given in table 1. 
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FIGURE 12. Time variation of energy in coarse-mesh calculation. 

Sub- 
grid 

Flow model 

Travelling wave 1 
2 
n 

Stochastic ensemble 1 
2 
3 
2 
2 
2 
2 
2 

A 

L/64 
L/64 
L/64 

L/64 
L/64 
Lj64 

Lj128 
L/64 
L/64 
L/64 

L/32 

W 

0 
0 
0 

L/16 
L/16 
L/16 
0 
0 
0 
L / 3 2  
Lfi28 

h 

L/128 
L/128 
L/128 

Lj128 

L/128 
L/128 

L/128 
L/128 

L/128 

L/ 128 

L/128 

C i  

0.9 
0.8 
0.7 

0.8 
0.8 
0.7 
0.3 
2.0 
0.8 
0- 7 
0 .7  

At 

0.001 
0.001 
0.001 

0.008 
0.008 
0.008 
0.002 
0.002 
0.002 
0.004 
0-004 

TABLE 1. Subgrid constants: A = filter width; W = eddy viscosity averaging length wale; 
h = mesh interval; ci = eddy-viscosity constant. 

It is seen from figure 12 that for the stochastically forced ensemble the co8rse-mesh 
calculations overestimate the rate of loss of energy during the first stages of the flow’s 
evolution, and then gradually return to an equilibrium level. This pattern was ob- 
served for each of the subgrid models studied, and was also observed for the travelling 
wave solution when these calculations were started using as initial conditions velocity 
fields that were not similar to the equilibrium velocity profile. This phenomenon may 
be related to the tendency of the turbulence to collapse which Moin, Reynolds & 
Ferziger (1978) encountered in their simulation of channel flow. It demonstrates that 
the subgrid modeliing is only successful in situations where a fully developed inertial 
range spectrum exists. The corollory of this is that the subgrid modelling misrepresents 
the subgrid energy drain during the first stages of the flow’s evolution. This is because 
the initial velocity spectrum is confined to low wavenumbers and thus for the exact 
fields the u’(x, t = 0) and consequently E s g s ( t  = 0) are zero, while for the coarse-mesh 
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FIGURE 13. Exact-filtered and coarse-mesh velocity spectra: ---, coarse mesh; 
-, exact filtered. 

calculations the subgrid model represents the u' in terms of the E(x, t )  which are not 
zero. Consequently in the coarse mesh calculations ZBgS(t = 0 )  is substantially positive, 
and the coarse-mesh calculations thus overestimate the initial rate of loss of energy, 

The results presented in table 1 for the ci are accurate to a t  least 5 yo : they were not 
determined to a higher accuracy simply because of the time-consuming nature of the 
adjustment procedure. It can be seen that the ci are not too sensitive either to the 
differences between the two flows or to the eddy viscosity averaging length scale W .  
This is because any variation in W influences primarily the high wavenumbers (see 
figure 16), while figure 9 shows that the subgrid dissipation in a coarse-mesh calculation 
is determined primarily by the low wavenumbers. However the ci decrease as A is 
increased. This is because as A increases so the amount of energy included in the coarse 
mesh calculation decreases. Finally we note that the tendency for c1 > c2 > c3 is as one 
would expect since in subgrid model 1 the eddy viscosity term has to cope with the 
whole of the energy drain. 

4.3. Optimization of filter width and eddy viscosity averaging length 

The profiles plotted on figure 13 are the exact filtered and coarse mesh velocity spectra 
obtained from three stochastically forced ensemble calculations using subgrid model 2 
and with A = h, Zh, and 4h, h = L/128, W = 0 and At = 0.008. In  each case the calcu- 
lation was carried forward in time for a further 50 time steps to check that the dis- 
played spectrum has evolved to a stationary state. It is seen that the coarse-mesh 
calculations all reproduce the shape of the filtered fine-mesh velocity spectra a t  low 
wavenumbers quite accurately. The differences in area between the filtered fine mesh 
and coarse-mesh fields are not significant. This is because the area under each curve is a 
measure of the total energy in the coarse mesh and filtered fine-mesh fields, and these 
two quantities have been brought into close agreement by tuning the subgrid con- 
stants ci. 

The plots of log,,,Efk) against k in figures 14 and 15 are for the stochastically forced 
ensemble and the travelling-wave solution. They show that in all cases the coarse- 
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FIGURE 15. Coarse-mesh velocity spectra, variable filter width: -, coarse mesh; 
_-- , exact filtered. 

mesh calculations over-attenuate the high wavenumber velocity spectrum.,They also 
suggest that A - 2h is roughly the optimum, since this choice gives fairly close agree- 
ment between the coarse-mesh and exact-filtered profiles a t  high wavenumbers, while 
still retaining 80 % of the total energy. This conclusion supports the earlier findings of 
Kwak et al. (1975). The profile for A = 0 shown in figure 15 is equivalent to the result 
of a calculation in which the residual stress terms of ( 5 )  are ignored. The gross distor- 
tion and erratic behaviour of the computed velocity spectrum a t  high wavenumbers 
for this case shows very clearly the need for subgrid modelling. In  the absence of the 
subgrid drain term there is no mechanism for dissipating the energy which is trans- 
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ferred by the non linear inertial forces from low wavenumbers to high wavenumbers. 
The consequence of this is the pile-up observed at the high wavenumber end of the 
spectrum, and ultimately a breakdown in the computation. 

The computations leading to figure 15 were repeated with W varying from 0 to @. 
It is seen from figure 16 that  a marked improvement occurs in the coarse-mesh calcu- 
lation when W = 4A, and that for the case of W = 0 ,  i.e. the Smagorinsky subgrid 
model, the coarse-mesh spectrum displays oscillations at high wavenumbers. These 
results favour the Direct Interaction or non-local subgrid model (Love & Leslie 1977). 
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A more detailed numerical study of the time evolution of the oscillations observed for 
W = 0 shows that they grow from small disturbances appearing initially at the highest 
wavenumbers. Figure 17 shows that these disturbances manifest thernselvcs in con- 
figuration space as small shocks located along the trailing edge of the main shock 
front. There are no small shocks along the leading edge of the main shock because as 
the main shock sweeps across the flow it overtakes and engulfs any flow perturbations 
that move out along its leading edge. Love & Leslie (1977) have suggested the following 
explanation of these observations. In a coarse-mesh calculation a local eddy viscosity 
coefficient causes small distortions moving out from the main shock fronts to evolve 
into smaller shocks. These distortions, which are due to misrepresentation of the 
subgrid drain terms by the subgrid model, are found to have a characteristic length 
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scale of O(3A). The resulting subsidiary shocks can be regarded as a genuine but 
unwanted feature of the coarse-mesh solution. Averaging the eddy viscosity over a 
length W - 4A inhibits their formation because this makes the eddy viscosity insensi- 
tive to small flow perturbations. 

It was found in the coarse-mesh calculations for the stochastically forced ensemble 
of flow fields that varying W had only a marginal effect on the high wavenumber tail 
of the computed velocity spectra. This is as expected since the chaotic nature of these 
flows means that small perturbations of the above type will be removed during the 
normal ensemble averaging operation, and will therefore not affect the displayed 
velocity spectra. Consequently this investigation does not imply that a non-local eddy 
viscosity will necessarily be superior to a local one for the Navier-Stokes equations. It 
is likely that it will only be superior in situations where the detailed evolution of 
individual flow features is of interest. 

4.4. Comparison of subgrid models 

Comparing the results of coarse-mesh calculations using models 1 through 4 shows 
that there is very little in practice to choose between the subgrid models in so far as 
the prediction of ensemble average flow features is concerned. The spectra shown on 
figures 18 and 19 are all equilibrium spectra: for the calculations an the stochastically 
forced ensemble (figure 18) we set A = 2h = L/64, At = 0.008 and W = L/16, while 
for the calculations on the travelling-wave solution (figure 19) we set A = 2h = L/64, 
At = 0.001 To and W = L. It is seen from both figures that all models reproduce the 
low wavenumber velocity spectrum quite accurately; again the reader is reminded 
that the differences in area under the curves are not significant (see $4.3) .  Model 4 is 
perhaps the least satisfactory. It predicts a slight shift in the peak of the velocity 
spectrum shown on figure 18, while on figure 19 it underestimates the velocity spectrum 
at both low and high wavenumbers and overestimates it at intermediate wave- 
numbers. Figure 19 shows that a t  high wavenumbers all models misrepresent the 
velocity spectrum. Model 2 gives perhaps the best representation, though this is 
marginal. For the stochastically forced ensemble all models underestimate the 
velocity spectrum a t  high wavenumbers and predict profiles similar to those shown on 
figure 14. 

This similarity between the subgrid models in predicting gross flow features is not 
too surprising, and is explained thus. In  the exact solutions to Burgers’ equation the 
bulk of the dissipation occurs in the shock fronts, which are regions of high velocity 
gradient. Elsewhere the velocity gradient has a small positive value. This means that 
a t  high Re large values of the derivative aulax only occur when the sign is negative, 
thus implying that to close approximation the equation 

((au/ax)3) + (- Iau/ax[(au/aX)z) (37) 

holds true. The coarse-mesh velocity solutions are broadly similar to the fine-mesh 
velocity solutions, and it can be likewise argued that, despite the tendency of the 
resolvable scale terms to smooth regions of steepened velocity gradient, the large 
values of a;ii;/ax will still have one sign: negative. Accordingly the relation 

((a;ii;/a43) ( - laz/ax\ (az/ax)2) (38) 
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FIGURE 20. Coarse-mesh velocity field. + , exact-filtered field. 

will also hold, but not so accurately as (37). It follows then that for each model the 
contribution of the residual stress term to the energy balance in the coarse-mesh 
calculation is as follows: 

Model 1 (iig) + A2c:(/E( au (%) au 2 ); 

Model 4 (Ti$) + A z c i ( l ~ 1 ( ~ )  aiii au 2 ). 

(39) 

This shows why the predictions of the mean energy per unit length are so similar for 
all 4 models. It also implies 

c; N ci 
c: > c; > cf 

all of which relations were found to hold to within the accuracy of the computations 
(see table 1 and figure 19). I am indebted to a referee for this clarifying comment. 

These results suggest that  if we are interested in gross flow features only, subgrid 
model 4 would seem a reasonable compromise provided we are prepared to trade some 
loss of accuracy for a considerable simplification of the numerics. However, figure 20 
shows that for the travelling-wave solution the coarse-mesh velocity field obtained 
with subgrid model 4 deviates considerably from the exact filtered field. Thus if we are 
particularly interested in the detailed evolution of a single realisation of a coarse- 
mesh calculation (e.g. weather forecasting) figures 19 and 20 suggest that  subgrid 
models 1 and 2 are preferable. The choice between models 1 and 2 depends upon the 
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price we are prepared to pay in computing time for the moderate improvement in 
accuracy which model 2 offers over model 1 .  

Finally, we remark that comparisons between the rate of change of total energy in 
the coarse mesh and exact filtered fields for a single realization of the stochastically 
forced ensemble calculation imply that the coarse mesh field over-responds to the 
driving force. Unfortunately due to large sampling errors this observation could not 
be conclusively established. If i t  is correct i t  means that in the coarse mesh calcula- 
tions there is an excess injection of energy a t  low wavenumbers. Increasing the subgrid 
constant increases the low wavenumber dissipation rate, and thus returns the total 
energy to the correct equilibrium value. This also increases the dissipation a t  high 
wavenumbers, which are not being excited directly by the driving force, and thus would 
explain the excess attenuation of the high wavenumber tail observed in figure 14. 

5.  Conclusions 
It has been confirmed that direct numerical solution of Burgers’ equation is feasible 

a t  high Re and that the overall dynamics are not too unlike those of the Navier-Stokes 
equations. It is well known that the energy flow in the inertial range is towards higher 
wavenumbers in both systems. This study shows that the division of the drain from 
large to  small eddies between the SGS and RS terms, and the structures of these 
terms, are also remarkably similar. This suggests that  conclusions about subgrid 
modelling drawn from Burgers’ equation should be reasonably applicable to the 
Navier-Stokes equations. 

The coarse-mesh calculations confirm the need for subgrid modelling. The effective- 
ness of this technique has been tested in detail by comparing the coarse mesh calcula- 
tions with filtered fine-mesh calculations. The standard Smagorinsky representation 
proves to be very satisfactory provided that the equation is prefiltered, the optimum 
filter width being about twice the mesh spacing. (Stanford workers have found a 
similar result for the Navier-Stokes equations.) Four different subgrid models of 
Smagorinsky type have been tested. They are all from the same vein as variants of the 
Smagorinsky subgrid model that  have been used elsewhere in large eddy simulations 
of Navier-Stokes turbulence. It is demonstrated that the modifications to  the basic 
Smagorinsky model embodied in the varients are (for Burgers’ equation) essentially 
trivial and have little net effect on the computation of gross flow features. The modi- 
fications are however found to have some effect on the detailed structure of the com- 
puted flow fields. Detailed study of these effects leads to  the conclusion that the simple 
Smagorinsky subgrid model with or without the Leonard variant is superior to  the 
more complex forms derived from it. It is therefore recommended as the most satis- 
factory of the subgrid models investigated. 

It has also been shown that for Burgers’ equations the non-local (spatially aver- 
aged) eddy viscosity suggested by the classical closures is superior to the local variety. 
However, this result appears to depend on a shock propagation phenomenon particular 
to  Burgers’ equation, and it cannot be concluded without testing that the same result 
would hold for the Navier-Stokes equations. 

The investigation has shown how error propagation a t  high wavenumbers can 
reduce the effectiveness of large eddy simulations, and has underlined the importance 
of controlling this phenomenon. 
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